RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.SC. THIRD SEMESTER EXAMINATION, DECEMBER 2012

SECOND YEAR

Date : 15/12/2012 Time : 10.30 am - 11.30 am CHEMISTRY (Honours) Paper : III (Gr. C)

Full Marks : 25

2+2

3

3

3

2

3 3

2

4

Group – C

<u>UNIT-I</u>

(Answer any one question)

- a) What are superacids? Give two examples. How the acidity of such solutions is expressed? Mention their uses.
 - b) Calculate the equilibrium constant value for the disproportionation reaction of copper (I) ion from the Latimer diagram of copper.

$$Cu^{+2} \frac{0.15}{Cu^{+1}} Cu^{+1} \frac{0.52}{Cu} Cu$$

If the copper (I) ion is dissolved in dimenthyl solfoxide as a solvent, the equilibrium constant value is only about 2. Suggest an explanation.

c) In the following solution equilibrium, will the products or reactants be favoured? Explian,

$$2Fe(OCN)_3(aq) + 3Fe(SCN)_2(aq) \rightleftharpoons 2Fe(SCN)_3(aq) + 3Fe(OCN)_2(aq)$$
 1+1

- d) Establish the Nernst equation for $O_2(g)/2H_2O(l)$ couple at 25°C for which E° = 1.23 volts. Find the reduction potential of the couple at pH=7 when the partial pressure of $O_2(g)$ is 0.2 bar at 25°C. 1+2
- 2. a) What is formal potential? How does it differ from standard potential?
 - b) Using Pauling's rules predict the structural formulae of the following acids:

 H_3PO_4 (PK_a = 2.12); H_3PO_3 (PK_a = 1.8) and H_3PO_2 (PK_a = 2.0)

- c) Calculate the concentrations of Cu⁺² and Cd⁺² ions remaining in solution after precipitation by excess H₂S from a 0.1 M solution of the ions in 0.3 M HCl medium. [For H₂S $K_1 = 9.1 \times 10^{-8}$; $K_2 = 1.2 \times 10^{-15}$ solubility products of CuS and CdS are 1×10^{-44} and 5×10^{-25} respectively]
- d) Justify the role of Zeimermann-Reinhardt solution in permanganatometric titration of iron (11) in HCl medium.
- e) Predict the direction of the following reaction: $BF_4^- + BH_4^- \rightleftharpoons BF_3H^- + BH_3F^-$.

<u>UNIT-II</u>

(Answer any one question)

- 3. a) Molar conductance values of 0.001 M solutions of the compounds PtCl₄.6NH₃, PtCl₄.5NH₃, PtCl₄.4NH₃, PtCl₄.3NH₃, PtCl₄.2NH₃ and PtCl₄.NH₃.KCl are 523, 404, 229, 97, 7 and 107 ohm⁻¹ cm² respectively. Suggest Werner's formulation of the compounds.
 - b) Distinguish between extrinisic semiconductors and intrinisic semiconductors.
 - c) Suggest IUPAC names of the following coordination compounds:
 - i) K₂ [OsCl₅N]
 - ii) $[(H_3N)_5Co-O_2-Co(NH_3)_5](NO_3)_4$
 - d) Explain 'Walsh Rule' for linear and bent molecules. Illustrate the structure of BeH₂ with the help of Walsh diagram.

4.	a) Construct a molecular orbital diagram for Carbon monoxide and predict its dipole moment value	
	and mode of coordination with hard and soft acid centers.	4
	b) What do you mean by 'Labile complexes' and 'Inert complexes'? Explain with suitable example.	3
	c) A solution containing 0.319 g of a hydrate isomer, with molecular formula CrCl ₃ .6H ₂ O was passed through a cation exchange resin in acidic form and the acid so liberated was neutralized with 19 ml of 0.125 M sodium hydroxide. Identify the isomer	3
	[Molecular weight of $CrCl_3.6H_2o = 266.35$]	5
	d) Distinguish between chelated complex and non-chelated complex.	2

80參CR